

The SPL Super-Beam Project

Marcos Dracos

IPHC-IN2P3/CNRS Strasbourg

Why this SB?

- Staging neutrino facilities towards the NF
- Cover "high" θ_{13} range
- Cost effective facility

- Low intensity SPL already approved,
- Detector could already be approved to cover other physics subjects (proton life-time, cosmological neutrinos...)

Present and future injectors

Stage 3: HP-SPL

Lina H ⁻ source – RFQ	ac4 (160 MeV) 3 MeV 50 MeV -chopper -DTL -CC	IO2 MeV 180 MeV	SC-linac (5 GeV) 643 MeV 5 GeV 8=0.65 β=1.0 →		
Length: 540 m	352.2 MH	704.4 MHz			
HP-SPL		Option 1	Option 2		
beam	Energy (GeV)	2.5 or 5	2.5 and 5 4 MW (2.5 GeV) <u>and</u>		
characteristics	Beam power (MW)	3 MW (2.5 GeV)			
		or			
		6 MW (5 GeV)	4 MW (5 GeV)		
	Rep. frequency (Hz)	50	50		
	Protons/pulse (x 10 ¹⁴)	1.5	2 (2.5 GeV) + 1 (5 GeV)		
	Av. Pulse current (mA)	20	40		
	Pulse duration (ms)	1.2	0.8 (2.5 GeV) + 0.4 (5 GeV)		

SPL Super-Beam Project

Super Proton Linac at CERN

CERN-2006-006 12 July 2006

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE **CERN** EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

(http://doc.cern.ch/yellowrep/2006/2006-006/full_document.pdf)

(SPL 3.5 GeV) Conceptual design of the SPL II

A high-power superconducting H⁻ linac at CERN

F. Gerigk (Editor), M. Baylac¹, E. Benedico Mora, F. Caspers, S. Chel², J.M. Deconto¹, R. Duperrier², E. Froidefond¹, R. Garoby, K. Hanke, C. Hill, M. Hori³, J. Inigo-Golfin, K. Kahle, T. Kroyer, D. Kuechler, J.-B. Lallement, M. Lindroos, A.M. Lombardi, A. López Hernández, M. Magistris, T.K. Meinschad, A. Millich, E. Noah Messomo, C. Pagani⁴, V. Palladino⁵, M. Paoluzzi, M. Pasini, P. Pierini⁴, C. Rossi, J.P. Royer, M. Sanmarti, E. Sargsyan, R. Scrivens, M. Silari, T. Steiner, J. Tückmantel, D. Uriot², M. Vretenar

SPL (CDR2) main characteristics

Ion species	H-	
Kinetic energy	3.5	GeV
Mean current during the pulse	40	mA
Mean beam power	4	MW
Pulse repetition rate	50	Hz
Pulse duration	9.57	ms
Bunch frequency	352.2	MHz
Duty cycle during the pulse	62 (5/8)	%
rms transverse emittances	0.4	π mm mrad
Longitudinal rms emittance	0.3	π deg MeV
Length	430	m

butch compressor to go down to 3.2 µs (important parameter for hadron collector pulsing system)

(possible energy upgrade to 5 GeV could be the subject of a 3rd CDR)

Proton Target

- 300-1000 J cm⁻³/pulse
- very challenging task • Severe problems from : sudden heating, stress, activation
- Safety issues !
- Baseline for Super-Beam is solid target, mercury is optional (baseline for NF)
 - Extremely difficult problem : need to pursue two approaches :
 - Liquid metal target (Merit experiment)
 - Solid target (extensive R/D program at STFC and BNL)
- Envisage alternative solutions

Proton Target

Proposed collection system

taking into account the proton energy and collection efficiency, the target must be inside the horn

Hadron production

Hadron production uncertainties

2.2 GeV protons

disagreement between models (Monte Carlo production, interaction and transport codes)

more development is needed (simulation, measurements)

Proton Energy and Pion Spectra

H' linac 2 GeV, 4 MW Accumulator ring Magnetic horn capture Target Decay tunnel

Proposed design for SPL

for a Hg target, 30 cm length, \emptyset 15 mm (x10¹⁶/sec)

$\overline{E_k}$ (GeV)	р	n	γ	e^+	e^-	π^+	π^{-}	μ^+	μ^{-}	K^+	K^0
2.2	1.4	17	5.0	0.08	0.17	0.24	0.18	4	1	7	6
3.5	1.8	23	7.0	0.15	0.28	0.41	0.37	10	3	35	30
4.5	2.3	25	7.7	0.21	0.35	0.57	0.39	11	3.3	93	68
8	3.1	33	11.0	0.41	0.63	1.00	0.85	30	9.5	413	340

relatively better collection when p_{proton}

the target must be inside the horn

Horn geometry

- 2.2 GeV proton beam :
 - $< p_{\pi} > = 405 \text{ MeV/c}$
 - $< \theta_{\pi} > = 60^{\circ}$

- 3.5 GeV proton beam :
 - $< p_{\pi} > = 492 \text{ MeV/c}$
 - $<\theta_{\pi} > = 55^{\circ}$

Main Technical Challenges

- Horn : as thin as possible (3 mm) to minimize energy deposition,
- Longevity in a high power beam (currently estimated to be 6 weeks!),
- 50 Hz (vs a few Hz up to now),
- Large electromagnetic wave, thermo-mechanical stress, vibrations, fatigue, radiation damage,
- Currents: 300 kA (horn) and 600 kA (reflector)
 - design of a high current pulsed power supply (300 kA/100 $\mu s/50$ Hz),
- cooling system in order to maintain the integrity of the horn despite of the heat amount generated by the energy deposition of the secondary particles provided by the impact of the primary proton beam onto the target,
- definition of the radiation tolerance,
- integration of the target.

Power Supply for horn pulsing (major issue)

3 Solutions proposed by ABB

μs

30 19

θ_{13} Sensitivity

simulation inputs

- Detector:
 - Water Cerenkov
 - 440 kt
 - at Fréjus (130 km from CERN)
- Run:
 - 2 years with positive focusing.
 - 8 years with negative focusing.
- Computed with $\delta_{CP}=0$ (standard benchmark) and $\theta_{13}=0$
- parameter...
 - $-\Delta m_{23} = 2.5 \ 10^{-3} eV^2$

$$\Delta m_{12}^{-1} = 7.1 \ 10^{-5} eV^2$$

•
$$\sin^2(2\theta_{23}) = 1$$

•
$$\sin^2(2\theta_{12}) = 0.8$$

Sensitivity 3.5GeV

M. Dracos, BENE

More about previous studies

•S. Gilardoni: Horn for Neutrino Factory and comparison with a solenoid

•http://doc.cern.ch/archive/electronic/cern/preprints/thesis/thesis-2004-046.pdf

•<u>http://newbeams.in2p3.fr/talks/gilardoni.ppt</u>

•A. Cazes: Horn for SPL

•<u>http://tel.ccsd.cnrs.fr/tel-00008775/en/</u>

•<u>http://slap.web.cern.ch/slap/NuFact/NuFact/nf142.pdf</u>

•<u>http://slap.web.cern.ch/slap/NuFact/NuFact/nf-138.pdf</u>

Present Collectors

Experiment	Current	Rep. Rate	Pulses per time period	Beam ►
<i>Numi</i> (120 GeV)	200 kA	0.5 Hz	6 Mpulses 1 year	NuMi horn 1 NuMi horn 2 NuMi horn 2
MiniBoone (8 GeV)	170 kA	5 Hz	11 Mpulses 1 year	MiniBooNE In operation
<i>к2к</i> (12 GeV)	250 kA	0.5 Hz	11 Mpulses 1 year	KEK horn 1 Completed KEK horn 2
Super-Beam (3.5 GeV)	300 kA	50 Hz	200 Mpulses 6 weeks	CERN horn prototype for SPL
CNGS (400 GeV)	150 kA	2 pulses/ 6 sec	42 Mpulses 4 year	CNGS horn 1 In operation CNGS horn 2 In operation 2nd HornMagnet Profile member for
			MiniBooN	

Decay Tunnel

Horn prototype

- For the horn skin AA 6082-T6 / (AlMgSi1) is an acceptable compromise between the 4 main characteristics:
 - Mechanical properties
 - Welding abilities
 - Electrical properties
 - Resistance to corrosion
 - Same for CNGS

No problem with power supply (pulser no more needed)Proton compressor no more needed

to be studied in EURO $_{\rm V}$

Conclusions

- LP-SPL already approved, HP-SPL possible before 2020.
- Many studies needed on targets.
- Collector studies are necessary to increase the system lifetime.
- Target/horn integration to be considered since the beginning.
- New studies have started in the framework of EUROv FP7 project.
- Studies on detector side by LAGUNA.

End

Comparisons

CERN horn prototype

initial design satisfying both, neutrino factory and super-beam

M. Dracos, BENE