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Introduction

Present State of Neutrino Oscillation Parameters

Am2, ~ 82-107° eV?
sin? 2012 ~ 0.80

Solar Sector

Am3ss ~ 2.5-1073 eV? sign(Am33) ?
Atm Sector

sin? 2023 > 0.9 sign(sin20s23) 7

STILL MISSING

013 poorly known (613 < 13°) — 3 Family Oscillations ?

6 completely unknown —— Leptonic CP-violation 7

High precision neutrino experiments required

to fully understand the neutrino mixing parameters




Why cross sections around 1 GeV

many current and planned experiments use a v flux picked at ~ 1 GeV
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and many others (NOvA, high v B-beams...)
e very few neutrino scattering data

e data have generically not been taken on the same targets used in the experiments

important to know very precisely the v-nucleus cross sections at
E, ~ 1 GeV




T he cross sections

at low energies (E, < 0.6 — 0.7 GeV): the dominant contribution comes from quasi-elastic
scattering;

at higher energies: inelastic production of charged leptons (via resonance excitation) +
inelastic production of 79 also contribute

negligible deep inelastic scattering contribution

formalism to describe inclusive v + A — [ + X reaction
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T he cross sections

the problem is the calculation of the hadronic tensor Wﬁ“”

e for |[q] < 0.5 GeV NMBT + nonrelativistic wave functions 4 expansion of the current
operator in powers of |q|/m

Carlson& Schiavilla, Rev. Mod. Phys. 70, 743 (1998)

e for larger |q| (to which we are interested in) we can no longer describe the final states | X)
in terms of nonrelativistic nucleons

U

we need a set of simplifying assumptions to describe relativistic motion of final state
particles and the occurrence of inelastic processes

the Impulse Approximation

scattered nucleons and recoiling system R
evolve independently of one another

target nucleus seen as a collection of individual
nucleons o

JMHZ’LJL |X>_>|Zap>®|7?’7p7?,>
(no Final State Interactions)



T he cross sections

2 1,2
G Vid

wht = —u/dgpdEP(p,E)

2

P(p, E) is the | spectral function

Benhar et al.,

Phys.Rev.D72:053005,2005

WHY (5,8) 6(v — B — Ejpyq|)
’ p+q|
4 Ep E|p+q|

. probability distribution of finding a nucleon with

momentum p and removal energy E in the target nucleus

it encodes all the informations about the initial struck particle

WHY describes electroweak interactions of the i-th nucleon in free space

effect of nuclear binding of the struck nucleon is accounted for by the replacement

q:(y,q)%q:(ﬂ,q) with ’;:E|p—|—q| —Ep

(a fraction v — U goes into excitation energy of the spectator system)



T he cross sections

then we get
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e T he hadronic tensor is decomposed in structure functions as usual
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m
N

e the formalism can be applied to both elastic and anelastic processes specifying the form of
the structure functions W;



Elastic interactions

1- tensor contraction
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A, ~16%

A, <1%

A,~50% A, ~31%

A, ~ 3%




Elastic interactions

2- the spectral function P(p, FE)

e we analyzed different models for P(p, E) for 10 (ve, e ™)



Elastic interactions

2- the spectral function P(p, E)

e we analyzed different model for P(p, E) for 190(ve, e™)

to start: the elementary cross section
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Elastic interactions

2- the spectral function P(p, E)

e we analyzed different models for P(p, E) for 10 (ve,e™)

2
a simple prescription: the Fermi gas | P(p, F) = <67];—3A> O(pr —P)0(Ep — e+ E)
F

where pg is the Fermi momentum and e is the average binding energy

guasi—elastic inclusive cross section
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Elastic interactions

2- the spectral function P(p, E)

e we analyzed different model for P(p, E) for 1°O(ve, e™)

realistic spectral function

Benhar et al.,
Nucl. Phys. A 579 (1994) 493
Phys. Rev D72 (2005) 053005

e oOverwhelming evidence from electron scattering that the energy-momentum distribution of
nucleons in the nucleus is quite different from that predicted by Fermi gas

o« the most important feature is the presence of strong nucleon-nucleon (NN) correlations

(virtual scattering processes leading to the excitation of the participating nucleons to states
of energy larger than the Fermi energy)

spectral function extends to |p| > pr and E > ¢

8 1 P(k.E) [GeV™] 0
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Elastic interactions

2- the spectral function P(p, E)
e we analyzed different model for P(p, E) for 190 (v, e™)

realistic spectral function Benhar et al., Nucl. Phys. A 579 (1994) 493

guasi—elastic inclusive cross section
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Elastic interactions

e realistic description must take into account interaction of struck nucleon with the spectator

system U
introduction of Final State Interaction (FSI)

e a simple prescription to include statistical correlation: Pauli blocking

o (10 *cm?)

P(p,E) — P(p,E)0(|lp +a|l — pFr)

DF = average nuclear Fermi momentum = /d?’r pa(r)pp(r) =209 MeV

1/3
pp(r) = 372 pa(r)/2 / p A (r) = nuclear density

guasi—elastic inclusive cross section
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Elastic interactions
Comparison with other calculations

most of them in the low (and very low) neutrino energy region

J.E. Amaro et al, Phys.Rev.C70:055503,2004, Erratum-ibid.C72:019902,2005.
collection of cross-sections on 160 including FSI, RPA (using an effective Nucleon-Nucleon
force) and Coulomb distortion

— - — Fermi gas

2 | ——— SF+PB

o (lO_38 cm?)
'_\
o

0.05 0.1 0.15 0.2 0.25
E, (GeV)

good agreement with cross sections including SF 4+ Pauli blocking
the Fermi gas model is unsatisfactory



About Final State Interactions

In quasi-elastic inclusive processes dynamical FSI are weak:

do/dQdv [107% cm?/sr/GeV]

e an energy shift of the differential cross section, due to the fact that the struck nucleon feels
the mean field generated by the spectator particles

e a redistribution of the strength, leading to the quenching of the peak and the enhancement
of the tails
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15 [ — - dashed line: Impulse Approximation
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Benhar et al.,Phys. Rev D72 (2005) 053005
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U

FSI do not affect the total inclusive cross section, resulting from integration over the
lepton variables



Resonance production

e we are interested in the reactions vn — [~ AT andvp — 1~ ATT
we use the same formalism as above where:

e the coefficients A, are the same

e structure functions and form factors (magnetic dominance approximations) for
(ATT|J,|p) are taken from

Lalakulich et al., Phys Rev. D 71, 074003 (2005)

e we used isospin relation to obtain (AT [J,|p) = V3 (AT |J,|n)

A production
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Resonance production

e we are interested in the reactions vn — I~ AT and vp — I~ ATT
we use the same formalism as above where:
e the coefficients A, are the same

e structure functions and form factors (magnetic dominance approximations) for
(ATT|J,|p) are taken from
Lalakulich et al., Phys Rev. D 71, 074003 (2005)

e we used isospin relation to obtain (ATT|J,|p) = V3 (AT|J,|n)

QE + A production x—sect

10

(o2}

e contribution from A production turns
out to be important for £, > 0.5 GeV
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Resonance production

we also evaluate the impact on the cross section of including higher resonances
Lalakulich et al., Phys.Rev. D74,014009 (2005)

e three isospin 1/2 states: Pyq(1440), D13(1520), S171(1535)

resonance production

0.0 05 1.0 15 20

as expected at the energies under discussion the second resonance region can be neglected

® OA 108y 10Dyg 0Py =1:0.12:0.06:0.02 at E =1.5 GeV



Resonance production
Comparison with other calculations

e many calculations are devoted to exlusive pion production

e We compare our results with those of
S. Ahmad et al., nucl-th/0603001

A production

6
——— Ahmad et al. -7
our results
4 L i
=
:oo -
7 heutrino
o
o
bo |
0
0.0

e the results seem to be in agreement



Comparison with experimental data

preliminary results

e from our results and standard isospin analysis we can estimate the cross section for 1 x

Alvg+p = £~ +p+xt) = Az
_ 4+ 1 22
A(vp +n — £ 4+ n+4+7m") = 5A3—|—T.A1
_ 0 \/§ 2
A(vp+n — € +p+7m7) = —?Ag-l-gf\l

Ag is the amplitude for the isospin 3/2 state of the = N system (predominantly the A)
A is the amplitude for the isospin 1/2 state.

10 8
0-7'('_'_:?O-A_F_'_—i_g(blapll+b20_D13+b30‘S’11)

b, are branching ratios for x T



Comparison with experimental data

preliminary results

e from our results and standard isospin analysis we can estimate the cross section for 1 x

e the MiniBooNE collaboration has presented a preliminary measurement of

O'Tr_'_

R= —F"F——
9CCQE

in (v,,12 ) production

Wasko et al., Nucl.Phys.Proc.Suppl.159:50-55,2006
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e theoretical curves underestimate the (preliminary) data. Effects due to non-resonant
background and coherent pion production could be sizeable



Conclusions and outlooks

the v-nucleus cross-sections in IA regime with realistic spectral
function have been discussed

at , ~ o(1 GeV) the quasi-elastic x-section with spectral function is
lower than the widely applied Fermi Gas models; the inclusion of
Pauli blocking further reduces the cross section

the contribution of aA-production is not negligible

other resonances have been added, resulting in a ~10% contribution
to the resonance production cross section

our results seem to be in agreement with other calculations

future prospects:

— inclusion of exclusive channels, both in the QE and resonance
production regions

— proper traitment of FSI (for differential CC x-sect and
r-rescattering)

— inclusion of non-resonant pion production
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Elastic Structure Functions and Form Factors

structure functions
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Anelastic Structure Functions and Form Factors

structure functions are complicated functions of form factors

detailed formulae in:

Lalakulich et al., Phys.Rev. D71, 074003 (2005) and
Lalakulich et al., Phys.Rev. D74, 014009 (2006)
form factors for A-production
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% vV, 2 C3 (0) 1
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2 2
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Elastic interactions
Comparison with other calculations
e different approach followed by C. Maieron et al., nucl-th/0303075
Impulse approximation to describe QE scattering +

Relativistic Shell Model to describe the bound nucleon +
Relativistic Optical Potential (ROP) or Relativistic Mean Field (RMF) to account for FSI

QECC (v,,"C)
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good agreement with cross sections including SF 4+ Pauli blocking



(’/ualz C)

Cross section of muon neutrinos on Carbon
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Elastic interactions
Comparison with other calculations

e the extension at higher energies: S. Ahmad et al., nucl-th/0603001

QECC (v.,"0)
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e we tried with two different vector and axial vector masses

e some discrepancy is found at energies E, > 0.5 GeV not completely understood



Some detail of the spectral function calculation

w m
(O] J7X) = (O|R,pr;N, —pRr)
\/p% + m?2

X Z<_pR7N|]f|x7pw> )

7

3 3 2
Wit = % [d*er &pel0IR, priN, —PR)

x, R Ep

R

(2

x 63 (a—pr —pz)S(v+ Eo — Er — Ez),
P(p,E) = Y [{(0|R,—p;N,p)|”
R
XO0(E—m+ Eg — Eg) ,

in which Eq is the energy of the initial hadronic state. The other variables have been already

introduced



Resonance production

e to evaluate the relative importance of QE and A-production at g-Beams, we compute
(fluxes from J. Burguet-Castell et at., Nucl.Phys.B695:217-240,2004)

N [ dB, @y (By, ) oi(B))
O'z(’Y) - de,/ CIDVe(EV,'y) Z—QE,A

and plot the ratio oa /og g as a function of the boost factor ~
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